BOUNDARY FUNCTIONS AND SETS OF CURVILINEAR
CONVERGENCE FOR CONTINUOUS FUNCTIONS

BY
T. J. KACZYNSKI

Let D be the open unit disk in the complex plane, and let C be its boundary,
the unit circle. If x € C, then by an arc at x we mean a simple arc y with one end
point at x such that y—{x}< D. If fis a function mapping D into some metric
space M, then the set of curvilinear convergence of f is defined to be

{x € C: there exists an arc y at x and there exists a point
p € M such that f(z) > p as z— x along y}.

If ¢ is a function whose domain is a subset E of the set of curvilinear convergence
of f, then ¢ is called a boundary function for f if, and only if, for each x € E there
exists an arc y at x such that f(z) — ¢(x) as z — x along y. Let S be another metric
space. We shall say that a function ¢ is of Baire class <1(S, M) if

(i) domain ¢=S,

(ii) range <M, and

(iii) there exists a sequence {¢,} of continuous functions, each mapping S into
M, such that ¢, — ¢ pointwise on S.

We shall say that ¢ is of honorary Baire class £2(S, M) if
(i) domain ¢=3,

(ii) range 4= M, and

(iii) there exists a countable set N=S and there exists a function ¢ of Baire
class <1(S, M) such that ¢(x)=4y(x) for every x € S—N.

It is known that if fis a continuous function mapping D into the Riemann sphere,
then the set of curvilinear convergence of fis of type F,;, and any boundary func-
tion for fis of honorary Baire class <2(C, Riemann sphere). (See [3], [4], [5], [6],
[9]) J. E. McMillan [6] posed the following problem. If 4 is a given set in C of
type F,s and if ¢ is a function of honorary Baire class <2(4, Riemann sphere),
does there always exist a continuous function f mapping D into the Riemann
sphere such that A is the set of curvilinear convergence of f and ¢ is a boundary
function for f? The purpose of this paper is to give an affirmative answer to
McMillan’s question. However, the corresponding question for real-valued func-
tions remains open. (See Problems 1 and 2 at the end of this paper.) In proving
our result, we first give a proof under the assumption that ¢ is a bounded complex-
valued function, and we then use a certain device to transfer the theorem to the
Riemann sphere. As we shall indicate in an appendix, the same device can be
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used to transfer certain results concerning real-valued functions of the first Baire
class to the case of functions taking values on the Riemann sphere.

Our proof is divided into several major steps, which are labeled (A), (B), (C),
etc. The proofs of some of the major steps are divided into smaller steps, which
are labeled (I), (II), (I11), etc. The results (A) and (B) are taken from the author’s
doctoral dissertation [5].

Throughout this paper we shall use the following notation. R denotes the set of
real numbers, S? denotes the Riemann sphere, and R" denotes n-dimensional
Euclidean space. Points in R™ will be written in the form {x,, x,, ..., x,> (rather
than (x;, xg, ..., X)) in order to avoid confusion with open intervals of real
numbers in the case n=2. The empty set will be denoted by @. When we speak of a
complex-valued function, we mean a function taking only finite complex values.
The closure of a set E will be denoted either by E or by Cl E. If I is an interval
of real numbers, then I* denotes the interior of I. If p is a point of some metric
space and r € (0, +00), then S(r, p) denotes the set of all points of the space having
distance (strictly) less than r from p.

We define

Q={x»yeR:-1=x1,0<y=1}
X={x0:-1<x<1}
H={x,y>eR?:y >0}

It will be convenient to identify <{x, 0> with the real number x, and X with (-1, 1).
If fis a complex-valued function defined in Q, then we shall understand the set of
curvilinear convergence of f to mean the set of all x € X for which there exists an
arc y at x (contained in the interior of Q except for its end point at x) such that f
approaches a finite limit along y. If a € X, £¢>0, and 0 < § <4n, then we let

s(a,e,0) = {x,»>ER?:0< y<ea—yctnf < x < a+yctn 6}

Thus s(a, ¢, 0) is the interior of an isosceles triangle in H with apex at a.

(A) If A< X is a set of type F,;, then there exists a bounded continuous real-
valued function g defined in Q such that

(i) for each x € A, g(z) — 0 as z approaches x through s(x, 1, =), and

(ii) if x € X, and if there exists an arc y at x such that g(z) — 0 as z approaches x
along v, then x € A.

(I) Let E, and E, be two sets on the real line. A point p € R will be called a
splitting point for E; and E, if either

(i) x,Spforall x, € E; and p< x, for all x, € E,, or

(ii) xo<p for all x, € E, and p=<x, for all x, € E;.
We will say that E, and E, split if and only if there exists a splitting point for E,
and E,.

(I1) By a special family we mean a family & of subsets of X such that

(i) & is nonempty,
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(ii) & is countable,

(iii) each member of % is compact,

(iv) if E, Fe &, then either E=F, En F= g, or E and F split.

(III) If E< X is an F, set, then there exists a special family & such that E=J #.

Proof. We can write E=\J2., A4,, where A, =g, A, is closed, and 4,S 4, ,,
for all n. Observe that if  is any open interval contained in X, then there exists a
countable family {J,};°_, of compact intervals contained in X such that I'=J;>., J,,
and n+#m implies that J, and J, split. Since X — A4, is a countable disjoint union of
open intervals, it follows that we can choose (for each ») a family

{3721
of compact intervals such that X—A4,=\J, I, ;, and j#k implies that I, ; and
I, , split. Let
F={A}v{l,,NnA,.;:n=12,...;j=12,...}

Then & is a countable family of compact sets, and
E= (J Ay= 4,0 U 4y01 0 (X—4,)
n=1 n=1

= Al V) nL=Jl }:Jl An+1 N In,j
- U&

Let F; and F, be any two distinct members of &. If either F, or F, is 4,= &,
then F; and F, are automatically disjoint. If neither F, nor F, is 4,, then we can
write

F, = Lay.jo N Aay+1
F; = Ly j0 N Ana +1-

If n(1) <n(2), then n(1)+ 1 =n(2), so
F; = Loy N Anys1 E X—Ane) S X—Apy+1 S X—Fy,

and therefore F; and F, are disjoint. If n(2) <n(1), a similar argument shows that
F, and F, are disjoint. Now suppose n(1)=n(2). Then, since F,#F,, we have
J(D)#j(2). So Ly, 2 =Ina). 52 and L, sq, split, and consequently F, and F, split.
We have shown that any two distinct members of & either split or are disjoint, so
F is a special family.

(IV) Let A< X be a set of type F,s. Then there exists a sequence of special
families {#,}-, such that

@) A=Nr-=1 (U #),

(ii) if n=1 and E € &, ,,, then there exists F € &, with ECF.

Proof. There exist F, sets 4,2A4,2A432 - - such that A=, 4,. By (III),
we can choose (for each n) a special family &, such that 4,=) &,. Let #=6,.
Fornz1, let

Fou1={FNE:Fe% and Ee&,,,}.
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By induction on n, one can show that each &, is a special family and that 4, = £,.
It is clear that the other conditions are satisfied.

(V) Suppose that J is a nonempty interval with J< X, and let a, b (a< b) be the
end points of J. By Trap (J, ¢, 6) (where 6 € (0, 47) and £ > 0) we mean the trapezoid-
shaped open set defined by

Trap (J,¢,0) = {{x,y) :0 <y <eatyctnd < x < b—yctn 6}.
For 8 € (0, 4n) let Tri (J, 6) be the closed triangular area defined by
Tri(J,0) = {{x,»>:y 20, a+yctn < x < b—yctn 6}.

If K is a nonempty compact subset of X, let J(K) be the smallest closed interval
containing K. If ¢ > 0 and 0 < <a <4, then we define

B(K, ¢, o, B) = Trap (J(K), ¢, ) — IE}J Tri (I, B),

where £ denotes the (possibly empty) set of disjoint nonempty open intervals
whose union is J(K)— K.

We state without proof the following readily verifiable facts ((VI) through
(XVIID).

(VD) s(x, e, 0) is an open subset of H.

(VID) Cl [s(x, &, )] N X={x}.

(VIID) If e<¢’ and 6’ < 6, then Cl [s(x, ¢, )] N H<s(x, €, 6).

(IX) If x#y and ¢, 0 are given, then there exists 8>0 such that, for every
7= 8, s(x, ¢, 0) and s(y, 3, 0) are disjoint.

(X) B(K, e, e, B) is an open subset of H.

(XI) If K; and K, split, then, for any ey, e;, «, and B, B(Kj, ¢y, @, f) and
B(K,, ¢, o, B) are disjoint.

(XII) If K; and K, are disjoint compact subsets of X, and if ¢, o, B are given,
then there exists 8 >0 such that for every n <6, B(Ky, ¢, o, B) and B(Kj, 3, «, B) are
disjoint.

(XIII) Cl [B(K, &, @, )] N XK.

(XIV) Suppose that K;<K, e>¢>0, and 0<B<fB;<e;<a<m/2. Then
Cl [B(K,, &1, o1, B1)] N HS B(K, ¢, , B).

(XV) Suppose that a<f<47 and x ¢ J(K)*. Then, for any ¢, ¢, and B,
B(K, &, o, B) and s(x, ,, 0) are disjoint.

(XVI) Suppose that x ¢ K and that e, «, 8, § are given. Then there exists §>0
such that for every 5 =<8, s(x, 7, 8) and B(K, ¢, o, B) are disjoint.

(XVII) Suppose that x ¢ K and that 8, «, 8, 6 are given. Then there exists ¢>0
such that for every n<e, s(x, 8, ) and B(X, 7, «, ) are disjoint.

(XVIII) Suppose that xe KN J(K)* and O0<B<a<fO<in. Let ¢ be given.
Then there exists 8 >0 such that for every n <8, Cl [s(x, , )] " HS B(K, e, «, B).

(XIX) If # is a special family, let #2 be the set of all members of & that have
two or more points, and let E(#) be the set of all end points of intervals J(F),
where Fe # and F# .
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Suppose that 0 < B <« < 6 <3, and that & is a special family. By a pair of special
o, B, 0 functions for %, 1 mean a pair (e, 8), where ¢ and & are positive real-valued
functions, the domain of ¢ is E(#), the domain of & is #2, and

(i) for each 5> 0, there exist at most finitely many F € #2 such that 8(F)=7;

(ii) for each >0, there exist at most finitely many x € E(%) such that (x) 2 7;

(iii) if x, x’ € E(#) and x#x’, then s(x, e(x), 6) and s(x’, e(x’), 0) are disjoint;

(iv) if F, Ke #2 and F#XK, then B(F, 8(F), , B) and B(K, 8(K), «, B) are dis-
joint;

(v) if x € E(#) and F € #72, then s(x, ¢(x), 6) and B(F, 8(F), «, p) are disjoint.

(XX) Let & be a special family and suppose that 0 <8< a< 6 <4w. Then there
exists a pair of special «, B, 8 functions for %

Though a formal proof of this statement is lengthy, it requires no originality,
so we omit the details. The idea is to arrange the members of & in a finite or in-
finite sequence F;, F,, F;, . . ., and then define ¢ and & inductively. One makes use
of statements (IX), (XI), (XII), (XV), (XVI), (XVII).

(XXI) Let # be a special family, and suppose 0<B<a<8<3m. Let (¢, 8) be a
pair of special o, B, 8 functions for & If ¢,, 8, are two real-valued functions having
domains E(#) and &2 repectively, and if

0 < &(x) = &(x) forall xe E(%),
0 < 8,(F) < &(F) for all Fe #2,

then (e,, 8,) is a pair of special «, 8, 8 functions for &

The proof of this statement is trivial.

(XXII) We now proceed to the proof of statement (A) itself. Let 4 be our given
F,; set. By (IV), we can choose a sequence of special families {#}2., such that
A=N2-1 (U #), and for each K e &, , there exists F e &, with K< F.

Let {8,}2=1 be a strictly increasing sequence in (0, ) coverging to i=.

Let {a,};-, be a strictly decreasing sequence in (4, ) converging to 4.

Let {8,}2-, be a strictly increasing sequence in (}, $7) converging to 3.

Let E,=E(%,).

Let (¢(1, -), &(1, -)) be any pair of special «,, 8;, 6, functions for Z,.

Now suppose that for each k<r we have chosen a pair of special o, B, 0
functions (¢(k, -), 3(k, -)) for &, in such a way that

(i) whenever 1£k=n—1, x€ E;,,, Fe %, and x € F N J(F)*, then

Cl [s(x, e(k+1, x), 0,.1)] N H < B(F, 8(k, F), o, Br);
(ii)) whenever 1<k=<n-1, x€ E,,,, and x € E,, then
Cl [s(x, e(k+1, x), 0,4+ 1)] N H < s(x, e(k, x), 6,);
(iii) whenever 12k=n—1, Ke (%.,.)?% Fe(%)? and K<F, then
Cl[B(K, 8(k+1, K), & 11, Bxs1)] N H < B(F, 8(k, F), oy, By).
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Then we construct (e(n+1, -), 8(n+1, -)) as follows. Let (e, 8) be any pair of
special e, 1, Bn+1, 0.4+, functions for &#, ;. If x € E,,, — E,, then for some unique
Fe(#£)?, xe FNnJ(F)*. By (XVIII), we can choose {(x)>0 so that 5=<é(x)
implies

Cl [s(x, s 0n+1)] N H s B(F’ a(n’ F)’ Oy lgn)
We set e(n+ 1, x)=min {e(x), £(x)}. On the other hand, if x€ E,,, N E,, then we
set e(n+ 1, x)=min {e(x), 3¢(n, x)}.
If K € (%, . .1)? then there exists a unique F € (%,)? with K< F. Set

8(n+1, K) = min {8(K), 38(n, F)}.

By (XXI), (e(n+1, -), 8(n+1, -)) is a pair of special «, .1, B +1, 0, +1 functions for
%, +1, and, by (VIII) and (XIV), conditions (i), (ii), (iii) are still satisfied when n
is replaced by n+ 1. Thus we can inductively construct a pair (¢(n, -), 8(n, -)) of
special «,, B,, 0, functions for &, in such a way that (i), (ii), and (iii) are satisfied
for every n.
Let
U, = [ g s(x, &(n, x), 0,,)] V] [ (L,J B(F, &(n, F), a, B,,)].
X n n)z

Fel

Then U, is open. For fixed n, all the various sets s(x, e(n, x), 6,) (x € E,)
and B(F, é(n, F), «,, B,) (Fe(#,)?) are open and pairwise disjoint, so that
every component of U, is contained in one of the sets s(x, «(n, x), 8,) (x € E,) or
B(F, 8(n, F), oy, B,) (Fe(£,)?). It therefore follows from (VII) and (XIII) that
if W is any component of U,, then

¢)) WnxcU%.

From conditions (i) and (ii) in the definition of a pair of special «, 8, 6 functions,
it follows that

U,NnH= [\ CListx, e(r, ), 6V N H] U [ ) CLIBCF, 8(r, F), an, )] 0 H].

Consequently, conditions (i), (i), (iii) in our inductive construction of (e(n, -),
8(n, -)) (together with the fact that x € E,,, —E, implies x € F N J(F)* for some
F e (#,)?) imply that U, ., N H< U, for every n.

By Urysohn’s Lemma there exists a continuous function g,: H — [0, 1] such that
g.(z)=1 for ze H—U, and g,(z)=0 for ze U,,, N H. Let

£(2) = 2(%)"&.@).

Then 0<g(z) £ 1, and the series converges uniformly, so g is continuous in H.
Ifze H-U,, then ze H— U, for every m=n, so that 1 =g,(z) =g, 1(2) =8+ 2(2)
=..., and hence

@ @0z 3 @ =@ @eH-U).
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Also, if ze U, 4y, then ze Uy, U,, .. ., U, .4, so that 0=g,(2)=g.(2)=- - - =g.(2),
and
®) gD D B"=@" (ze U

m=n+1

Let x, € A be given. We must show that g(z) — 0 as z approaches x, through
8(xo, 1, #7). Take any natural number n. Since x, € |J £, .1, it follows that either
xo € E,,, or else x,€ FNJ(F)* for some Fe(%,,,)% In the first case, set
n=¢e(m+1, x,). In the second case, (XVIII) shows that we can choose >0 small
enough so that

8s(xo, m, 37) S B(F, 3(n+1, F), an 41, Bns1)-

Suppose <{x, y) € s(x,, 1, $7) and y <. Then, in the first case,

<x’ y> € S(xo, s -3-77) = s(an 8(n+ 1, xO)’ 0n+ 1) = Un+1’
and, in the second case,
<X, y> ES(XO, s %‘”) < B(F’ 8(n+ 1, F)9 ®p 415 /3n+1) S Unsa

Thus, referring to (3), we see that g(x, y) < (3)" whenever {x, y> € s(x,, 1, $7) and
y <. Therefore g(z) — 0 as z approaches x, through s(x,, 1, 3=).

Let x, be a point of X, and assume there exists an arc y at x, such that g(z) -0
as z approaches x; along y. Then y has a subarc y’ with one end point at x, such
that y'—{x;}<g " ((—-@)", D"). By (2), ¥'—{x;}< U,. Therefore, by (1), x, €
U .. Since n is arbitrary,

xie () (U#) = 4.

Thus, by restricting g to Q we obtain the desired function.

(B) Let A be a subset of X of type F,;, and let ¢ be a bounded complex-valued
Sunction of honorary Baire class <2(A, R2). Then there exists a bounded continuous
complex-valued function h defined in Q such that, for each x € A, there exists an
arc vy at x with y—{x}<s(x, 1, =) and

lim  h(z) = $(x).

(I) Let Ibe a bounded open interval in R, and let f: I — R be a bounded, strictly
increasing function. Then there exists a continuous, weakly increasing function
S*: R— R such that f*(f(x))=x for every x € I. (This result is probably not new,
but I do not know of a reference for it, so I am obliged to prove it here.)

Proof. Let Z=f(I), let c=infZ, and let d=sup Z. Observe that Z<(c, d),
and that f~1: Z — [ is strictly increasing. I assert that for each x € (c, d)

C) sup f~H((c, x] N Z) = sup f~}((c, x) N Z).
If x ¢ Z, the equation is trivial. Suppose x € Z. Then

¢ <y <f7x) =) < x and f(y) €Z),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



114 T. J. KACZYNSKI [July
so that (¢, f~1(x))<f~*((c, x) " Z). Hence
sup f~1((c, X) N Z) 2 f~}(x) = sup f~1((c, x] N Z).

The opposite inequality is trivial, so (4) is established.
I also assert that for each x € (c, d)

&) inff~*((x, d) N Z) = sup f~*((c, x] N Z).
Obviously,
inf f~Y((x,d) " Z) 2 supf~*((c, x] N Z).

Take any y>supf~'((c, x] N Z). If f(y)<x, then f(y)e(c,x]NZ, and so
yef~Y(c, x] N Z), a contradiction. Thus f(y)>x and f(y) € (x, d) N Z. There-
fore y € f~Y((x, d) N Z), so that inf f~*((x, d) N Z)<y. In view of the choice of
y, this implies that

inf f~Y(x,d) N Z) < supf~X(c, x] N Z),
and (5) is established.
Define f* on (c, d) by
f*x) =supf~H (e, xINZ)  (xe(cd)).

It is clear that f* is weakly increasing and that f*(f(x))=x for every x € I. The
continuity of f* can easily be deduced from the equations

supf*((c, x)) = f*(x),  inff*((x, d)) = f*(x),
which are established as follows:

supf*((c, x)) = sup supf~'((c,y]1NZ)
=supf'((c,x) N Z)
= sup f~X((c, x] N Z)
= f*(x),
inf f*((x, d)) = N jg{ s (e yInZ)
= inf inff~(»,d)nZ)
= inff~}((x, d) N Z)
= sup f~}((c, x] N Z)
= f*(x).
We now extend f* to all of R by setting
f*(x) = inff*((c,d)) if x =S¢,
f*x) = supf*((c, ) if x 2 4,

and we are finished.
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(II) Suppose that M is a metric space and that u: M — R is a function having the
following property. For every sequence { p,} of points of M, every p € M, and every
y€ RU{—0, +0}, if p, = p and u(p,) — y as n — co, then y € R and u(p)=y.
Under this hypothesis, u is continuous.

Proof. Let {p,} be any sequence of points in M converging to a point p € M.
We have only to show that u(p,) — u(p). But suppose u(p,) + u(p). Then there
exists a subsequence {u(p.y)} and there exists y € RU {—o0, 40} such that
y#u(p) and u(p,q,) — y as k — 0. Since p,y, — p as k — oo, this contradicts our
hypothesis.

(III) Let A<(—1, 1) be of type F,;, and let § be a complex-valued function of
Baire class <1(4, R?). Then there exists a sequence {g,} of continuous functions,
each mapping R into RZ, such that for each x € 4, g,(x) — ¢(x) as n — 0.

Proof. This can be proved in a more general context, as shown in [5]. For a
quick proof of the special case stated above, we can refer to a theorem of Bagemihl
and McMillan [1, Theorem 2], which tells us that there exist continuous real-valued
functions f; and f, defined in H such that, for each x € 4, f, has angular limit
Re ((x)) at x and f; has angular limit Im (J(x)) at x. For each x € R, set

ga(x) = fl(x, %) + ifz(x, %)

(IV) Now we proceed to the proof of statement (B). Let ¢ be a function of Baire
class £1(4, R?) and let E be a (possibly empty) countable subset of 4 such that
#(x)=y(x) for each x e A—E. Let N be an infinite countable set with ESN< X.
Let w be a real-valued function defined on N such that w(s)>O0 for each se N
and

> w(s) < 2431,

SEN

For each xe X=(—1, 1), let N(x)={se N: —1<s<x}. Define f on (—1,1) by
setting

[ =x+ 2> w)

$eN(x)

Then fis a bounded, strictly increasing function on (— 1, 1), and | f(x) — x| <22 —1.
By (I), there exists a continuous, weakly increasing function f*: R — R such that
f*(f(x))=x for each x e (-1, 1).

Let

Hy={(xyp)eR:0<ys4}
For fixed <{x, y> € H,,

et

is a strictly increasing continuous function of u that approaches +oc0 as u — +00
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and —oo as u — —oo. Consequently there exists precisely one number u(x, y) that
satisfies the equation

x—(1=y)u(x,
© utx, ) - (0228 g,
I assert that u(x, y) is a continuous function on H,. We show this by using (II).
Suppose that <xa J’> € HO’ Uy € Ry {_w’ -I-CD}, {<xm yn>}gH0’ <xm yn> i <x9 y>:
and u(x,, y,) — uo. If uy=+o0, then, as n — oo,

xn_(l _yn)u(xm yn) — —

w,
In

and so

u(xm yn) _f* (xn - (1 _i:)u(xm yn)) — 400,

which contradicts (6). So u,# +00, and a similar argument shows that u,# —oo.

Thus, by (6),
= lim [u(xn, ya)—f* (x"—(l L y,.))]

Yn
= u, —f*(x_ (1 _Y)“o).
y
Consequently u,=u(x, y). By (II), u is continuous.
From (III), there exists a sequence {g,} of continuous complex-valued functions
defined on R such that g,(x) — ¥(x) as n — oo for each x € 4. For n2 2, define

ho(x, y) = (yn(n+1)—n)g,(u(x, )+ (n+1)—yn(n+1)) g, + 1(u(x, ))

when 1/(n+1) <y < 1/n. Then h, is continuous on H,. Let {s,};- ; be all the elements
of N, where n#m implies s, #s,. Let

r, = inf f(x),
x>58p
L = sup S(x) = f(sn),

Zy = ‘ﬁ(sn)_‘l'(sn) if s, € E,
z, =0 if s, ¢ E.

Notice that r,—1,>0. If x and y are real numbers, define x v y=max {x, y} and
x A y=min {x, y}. For {x, y> € H,, set
) v 0] Z.

Then A, is continuous in H,. Observe that A,(x, y)=0 when y21/n. Using this
fact, it is easy to show that, if we set

hy = ho+ i A,
n=1

85, 3) = W=m) v 0l (1=

S,—X

ro+l,—2s,+2

then A, is defined and continuous on H,.
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Let p be any point of A. The line

™ x =) -py+p

passes through <p, 0>, and, since | f(p)—p| <2'2—1=ctn =, the part of this line
which lies in H, is contained in s(p, 1, 37). We show that h;, approaches (p)
along this line. By substituting (f(p)—p)y+p for x in the expression for A,(x, ),
one obtains

An(x, y) = [(l—ny) v 0]
? 7=

If p<s,, then f(p) £/,, and one can verify directly that (8) vanishes. If p > s,, then
f(p)Zr,, and again one can verify directly that (8) vanishes. Thus A,(x, y) vanishes
along that part of the line (7) which lies in H.

Solving (7) for f(p), we find that, along the given line,

S(p) = x=(1-»)p)y,

r,,+1,,+2(%— 1)(s,,—p)—-2f(p) D v 0]2,,.

and hence
p =f*(f(p)) = f*(x—(1—y)p)/y).

Therefore (if 0<y<3) p=u(x, y). Hence, if {x, y) satisfies (7), n=2, and 1/(n+1)
<y=1/n, then

ho(x, y) = (yn(n+1)—n)gu(p) +((n+ 1) — yn(n+1)) gu.+1(p),

so0 that hy(x, y) lies on the line segment joining g,(p) to g,..(p). It follows that
ho(x, y) approaches ¢(p) as {x, y> approaches p along the line (7). Since each A,
vanishes on the part of this line lying in H, h,(x, y) also approaches ( p) along this
line.
Let s, be any point of E. The definition of f shows that
fG)=x] £ 2 wis)

SEN

for all x, and from this it easily follows that

[rn—Sm| = Z w(s),  |ln—sml = z w(s).

SEN SEN
Hence

rm+Im_

2 Om

< D w(s) < 22—1 = ctn §m.

SEN

So the part of the line

©) x = (r"‘;l"'—sm) +5n

that lies in H, is contained in s(s,, 1, 37). We show that h; approaches ¢(s,) as
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Z — $, along this line. Substituting the value of x given by (9) into the expression
for A,, we obtain

Ay(x,y) = [(1—ny) v 0]
(10 .[(1_”_.1_1’l ) v O]Z,..

If s,<s,, then I,<r,<l,<r,, and one can verify that (10) vanishes. If s, <sp,
then /,<r,<1,<r,, and again one can verify that (10) vanishes. Thus, for n#m,
A,(x, »)=0 when <{x, y) lies on the line (9) and in H.

If we take n=m in (10), we obtain

An(x,y) = [(1=my) V Ozp.

Therefore A, (x, y) approaches z, =¢(s,) —¥(sn) along the given line.
Take any {x, y) € H, satisfying (9), and take any a and b satisfying

r,,—r,u+1n—1,.+2(§—1)(sn—sm)

(1) a<s,<b
Then f(a) < I, <3(rm+1,) <rn < f(b), so that

(f@)—sm)y+sn < x < (f(B)—5m)y +Sm;
from which we deduce that

@) < (x—=(1=y)sn)ly < f(b).

Since f* is weakly increasing,

a = f*(f(a) = fH(x—1-ysn)y) £ f*B) = b.
Because a and b were taken to be any two numbers satisfying (11), we conclude
that
Sm = f*((x—1=2)sn)] ),

whence it follows that u(x, y)=s,. Thus

ho(x, y) = (yn(n+1)—n)gu(sn) +((n+1)—yn(n+1)) gn + 1(5m)

when 1/(n+1)<y<1/n. Consequently hy(x, y) approaches {(s,) along the line
(9); so hy(x, y) approaches y(s,) + (s,) —¥(Sm) = $(sm) along the given line.

We have shown that, for each x € A, there exists a line segment at x, lying in
s(x, 1, $m), such that h,(z) > ¢(x) as z— x along the line segment. We do not
know that A, is bounded, but this is easily patched up. Choose a real number B
such that, for all x € 4,

—B < Re ¢(x) < B, —B < Im ¢(x) < B,
and set
h(z) = ((Re hy(2)) v (—B)] A B)+i([(Im hy(2)) v (—B)] A B).
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If we extend A to a bounded continuous function defined in H, and then restrict
hto Q, we have the desired function.

(C) Let d(t) be a weakly increasing, positive, real-valued function defined for
0<t=1. Then there exists a continuous, complex-valued function k defined in Q,
with |k(z)| £2%2 for all z € Q, such that for each a € (0, 1] and for each arc

ys{x»:-12x21,0<y=a}

(diameter y) 2 d(a) implies (diameter k(y))=2.

Proof. Let p(x)=% [; d(t)dt (0<x<1). Then p is positive, continuous, and
strictly increasing, and p(x)<4 d(x). Let a € (0, 1] be given. Since p(x)~* is uni-
formly continuous on each compact subset of (0, 1], there exists e € (0, 1] such
that

Gasx, =1 and |x;—x;| < )

implies

|p(x) "t =p(x2) Y| < 4.
Let ¢(a) be the supremum of all such &. Then £(a) is an increasing function of a,
and

(3a £ x; £ 1 and |x;—x,| < &(a))

implies

[p(xy) " =p(x2) Y| < 4.
Set g(x)=[7 e(t) dr. Then g is positive, continuous, and strictly increasing, and
g(x) < e(x). Let m(x)=min {p(x), g(x)}. For <{x, y) € Q, define

ki(y) = sin 2n/ym(y)),  ka(x, y) = sin (4mx/p(y)),
k(x, y) = ki(y)+ikq(x, y).

Now suppose that a € (0, 1] is given, and suppose that y={(x, y> : —1=5x<1,
0<y=<a} is an arc with (diameter y) 2 d(a). Choose z, =<{x;, y,> and z,=<{x,, ya>
.in y so that |z; —z;| 2 d(a). Assume without loss of generality that y,<y,. We can
choose a’ so that 0<4a’'<y,<a'<a. Since m(a)<4d(a’)<}d(a), and since
|21 —25| 2 d(a), we must have either

12 Iyl 2 m@)
or ’
(13) |y1=y2| < m(@) and |x;—x,| 2 }d(a).

First assume that (12) holds. Here m(y;) < m(y,) <m(a’), so

27 yum(y1) S 27 yam(y,),
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and we have

2r 2w _ 27(y1m(y1) — yam(ys))
yam(ys)  yim(y1) y1yem(y)m(ys)

S 27(yim(ya) —yom(ya)) _ 2m(y1—yo)
= Y1yam(y)m(ys) y1yam(y1)
> 2mm(a’) > 2w > %
= yyam(y) T yiya T

Thus, as {x, y> moves along y from <{xy, y;> to {x,, ¥o», We see that 2=/ ym(y)
varies over an interval of length at least 27, and hence k,(y) varies over the whole
of the interval [— 1, 1]. Therefore (diameter k(y)) = 2.

Now assume that (13) holds. Then

dmxy  4mx, X1 X _| Xy Xp ]
p(y) p(y2)| = T Llp(y) Pyl [p(y2) p(y1)
[lxi—xs| | 1 1
= 4'”. p(y1) ‘P(J’z) p(y1) ]

L 4, [14@) ‘ 1 1

|

=" p@) " |p(ra) p(y)
i 1 1
2 4|1~ ;55001 |

Now, |y1—ys| <m(a)=q(a’) S&(@), s0 | p(y2)~*—p(y1)~!| £3. Therefore
|47x1/p(p1) —dmxa[ p(y2)| Z 2,

and we see that as (x, y) varies along y from {(x;, y,> to {x,, yo), the quantity
4mx/p(y) varies over an interval of length at least 2w, so that k,(x, y) takes on every
value in the interval [—1, 1]. Thus (diameter k(y))=2.

(D) Let A< X be a set of type F,;, and let ¢ be a bounded function of honorary
Baire class <2(A, R%). Then there exists a bounded continuous complex-valued
function f defined in Q such that A is the set of curvilinear convergence of f and ¢ is
a boundary function for f.

Proof. Let g be the function of (A) and let & be the function of (B). For ¢ € (0, 1],
let

dy(t) =sup{8e(0,1]: (1 2 £, y2 2 1, {x1, ¥1) € @, Xz, ¥2» € O, and
|<x1, p1) —{xa, p2»| < 8) implies |h(xs, y1) —h(xa, yo)| < 1},
dy(t) =sup{8€(0,1]: ()1 2 t,y2 2 8, {x1, Y1) € O, {X2, y2» € Q, and
[<x1, y1> =X, y2)| < 8) implies |g(x1, y1) —g(x2 y2)| < 1},
d(t) = min {} di(3?), } d5(3¢), 11}

Let k be the function of (C) for this d(¢), and set f(2)=h(z)+g(2)k(z) (z € Q). We
show that f'is the desired function.
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Suppose x € A. Then there exists an arc y at x, lying in s(x, 1, ), such that 4
approaches ¢(x) along y. But g(z) approaches 0 through s(x, 1, 3=) and k is bounded,
so g(2)k(z) approaches 0 along y. Hence f(z) approaches ¢(x) along y. Thus ¢
is a boundary function for f, and A4 is a subset of the set of curvilinear convergence
of f. It only remains to show that if x is a point of the set of curvilinear convergence
of £, then x € A. To show this, let y be an arc at x along which fapproaches a limit.
We may assume without loss of generality that y has an end point in {(x, 1> : —1
< x=1}. By the properties of g, it will be enough to show that g approaches zero
along y. Assume that g does not approach zero along y. Then there exists ¢ € (0, 1]
and there exists a sequence {z,} such that z,ey—{x}, z, > x as n— oo, and
| g(z,)| Z € for all n. Write z,=<x,, ¥,>. Choose N so that n> N implies y, < }e.

For the time being, let n be a fixed integer greater than or equal to N. Set a=4y,/3.
Let ' be the component of y N Cl [S(d(a), z,)] that contains z,. (Recall that
S(d(a), z,)={z : |z—2z,| <d(a)}.) Then

d(a) £ diameter y' < 2 d(a),
and, since d(a) <1a,
Ys{xyitasy=sa

By the choice of k, there exist points p and ¢ in y’ with |k(p)—k(g)| 2. We have
|p—q| £2 d(a) < d,(3a), so, by the definition of d,(t),

|h(p)—h(g)| = da < de.
Similarly,

lg(p)—g(z.)| = 3a < e,

|g(q)—g(z,)| < %a < e
Thus

[f(D) =@ 2 |g(p)k(p)—g(@k(q)| — |h(p)—h(q)]|
> |g(p)k(p) — g(zn)k(p) + g(zn)k(P) — g(z,)k(q)
+8(z,)k(q) — 8(@)k(q)| — e
2 |g(z.)| [k(p)—k(@)| - |k(p)| | 8(p)—g(z,)|

— k(@) | () - 8(zn)| — 3¢
2e—2Y%e—2120e—1e > e,

v

Note that |p—z,| <d(a) £}a=1y,, and similarly |g—z,| <1y,

We have now shown that, for each n= N, there exist points p,, ¢, €y with
|Pn—2a| S V1, |90~ 24| S3¥n, and |f(p,) —f(gn)| > . But then p, — x and g, — x
as n— oo, so f does not approach a limit along y. This is a contradiction. We
conclude that g(z) — 0 along y, and hence that x € 4.

(E) Let A<C be a set of type F,;, and let ¢ be a bounded function of honorary
Baire class =<2(A, R?). Then there exists a bounded continuous complex-valued
JSunction f defined in D such that A is the set of curvilinear convergence of f and ¢
is a boundary function for f.
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Proof. If A= @, this is trivial. If A# &, then we can assume, by making a suit-
able rotation of the disk, that (1,0> € 4. Let G=D—-S@, <3,0>) and let L=C
—{1, 0>}. Because Q U X is homeomorphic with G U L, we see from (D) that
there exists a bounded continuous complex-valued function f; defined in G such
that

(i) 4 N Lis the set of all points x € L such that f; approaches a limit along some
arc at x, and

(ii) the restriction of ¢ to L is a boundary function for f;.

Since G is closed relative to D, we can extend f; to a bounded continuous function
f defined in D in such a way that f has ¢({1, 0>) as a radial limit at {1, 0>. This f
will have all the desired properties.

(F) Let S? denote the Riemann sphere, let A<C be a set of type F,,, and let ¢
be a function of honorary Baire class <2(A, S%). Then there exists a continuous
Sfunction f+ D — S? such that A is the set of curvilinear convergence of f and ¢ is a
boundary function for f.

(I) We suppose that

S% = {x,y,2) e R® : x2+y*+2% = 1}.
We let

U={<x,y,2>es2:—%<z§ 1},
V={<X,y,2>6521—1 < z<ﬁ},
ZU={<X,y,Z>ES2:#<z§ 1}’

ZV={<x,y,z>eSZ:—l fz< —5%}

We define mappings ®,: Zy — U and ®y: Z, — V by setting
Dy(x, y, 2) = {x(42—1), y(4z2 - 1), 2(4z°-3))  (Kx,p,2) € Zy)
and
Dy(x, y, 2) = <{x(4z2-1), y(4z2—1), z(422-3)) x, 5, 2> €Zy).
Then @, is a one-to-one continuous function from Z; onto U. Since Zy and U

are each homeomorphic to the unit disk D, it follows from [7, Corollary 1, p. 122]
that @ is a homeomorphism of Z; onto U. Similarly, ®, is a homeomorphism of

Zyonto V.
We define a continuous function ®: S% > S2 by setting
05,2 = 060, gm<zsl,
O(x,y,2) = {x, 5, —2), —2—},5 szs 2%,2
07,9 = Oylr, 3,2, ~15z< -y
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Notice that for each p € S2, the inverse image set ® ~1({p}) contains at most three
points. )

(IT) Most of the results of Hausdorff [2] on real-valued Baire functions can easily
be shown to hold also for functions taking values in R". We shall make free use
of these results in this more general form.

(IIT) Now we proceed to the proof of (F). Let N be a countable subset of 4
such that the restriction of ¢ to A— N is of Baire class <1(4—N, S2), and let
A;=A—N. It will be convenient to let F,(4,) denote the class of all subsets of 4,
that are of type F, relative to 4,, and G4(4,) the class of all subsets of A4, that are
of type G; relative to A,. Since U and ¥V are open subsets of S2 and UL V=52,
we see that A; N =Y (U) e F,(A)), A;—¢ (V) e Gy(A,), and 4, —¢"Y(V)< A,
N ¢~Y(U). An elegant theorem of Sierpinski [8] now enables us to choose a set
K e F,(A;) N G4(A,) such that

A —¢7 (V) s K< 4, n ¢~ (V).

Let L=A,—K. Then L € F,(A4;) N GxA,). Moreover, $(K)< U and ¢(L)< V.
Let p, =<1, 0, 0>, and define ): A — S2—{p,} as follows. Set

P(x) = O5l($(x)), x€K,
P(x) = DyY($(x)), xeL.

If xeN, we let §i(x) be any element of Z, U Z, for which ®(b(x))=¢(x).
This choice of (x) is always possible, because ®(Z, U Z,)2U U V=82 Let
Jo be the restriction of ¢ to 4;,=KWUL. I assert that i, is of Baire class
<1(4;, S2—{p,}). Since S2—{p,} is homeomorphic to R?, it will suffice to show
that 5 1(G) € F,(A,) for every open set GES?—{p,}. But

$o(G) = 4, N $7HG) = [KN ™Y@V [L N ¢~H(G)]
= [KN ¢~ HPu(Zy N GV [L N $~HPW(Zy N G))] € Fi(4y),

s0 i, is of Baire class <1(4;, S2—{p,}). Now, 4, =A— N is of type G, relative to
A, so (again using the fact that S2—{p,} is homeomorphic to R?) we can extend
¥, to a function y; of Baire class < 1(4, S?—{p,}). The existence of ), shows that
¢ is of honorary Baire class <2(4, S2—{p,}). The range of ¢ is contained in
Zy VU Zy, so that the values of ¢ are bounded away from p,. Thus, if we still think
of S2—{p,} as corresponding to the plane R2,  corresponds to a bounded function.
By (E), there exists a continuous function f;: D — S2—{p,} such that the values
of f, are bounded away from p,, 4 is the set of curvilinear convergence of f;, and
¥ is a boundary function for f;. Let f denote the composite function ® o f;. Then f
is continuous and ® o yy=¢ is a boundary function for f. It only remains to show
that if x is a point of the set of curvilinear convergence of f, then x € 4. Let y
be an arc at x along which f approaches a limit, and let C(f;, ¥) denote the cluster
set of f; along y. Assume that x ¢ 4. Then f; does not approach a limit along v,
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so C(fi, y) contains infinitely many points. Now, ® maps at most three points
to any one given point, so ®(C(fy,y)) contains infinitely many points. But
D(C(f3, y)) is the cluster set of f=® o f, along y, and hence f does not approach a
limit along y, contrary to our assumption. We conclude that x € 4 after all. This
completes the proof of the theorem.

The following questions remain open.

PROBLEM 1. If A is an arbitrary set of type F,; in C, does there necessarily exist
a continuous real-valued function in D having A as its set of curvilinear convergence?

PROBLEM 2. If A< C is a set of type F,;, and if ¢ is a function of honorary Baire
class <2(A, R), does there necessarily exist a continuous real-valued function in D
having A as its set of curvilinear convergence and ¢ as a boundary function?

Appendix. Some theorems concerning functions of Baire class <1 which take
values on the Riemann sphere can be obtained by the technique used to prove (F).
We use the notation set up in the proof of (F).

THEOREM (). Let M be a metric space, and let ¢: M — S? be a function such that
¢~Y(G) is an F, set for every open set G< S?. Then ¢ is of Baire class <1(M, S2).

Proof. Since U and V are open and U U V=582, it follows that the set ¢ ~(U)
is F,, the set M—¢~Y(V) is G;, and M—¢~}(V)<é~1(U). By the theorem of
Sierpinski [8], there exists a set K that is simultaneously F, and G; such that

M—¢-%V) € K < $~XU).
Let L=M—K. Then L is simultaneously F, and G, and
$K)S U, $L)cV.
Define : M —> S2—{p,} (where p,=<1, 0, 05) by setting
P(x) = O5l($(x), xeK, P(x) = Dy'(4(x)), xelL.

If G is an open subset of S2—{p,}, then
$HG) = [KN ¢ H(Pu(Zy N G))] Y [L N ¢~ HDy(Zy N G))],

so $~}(G) is an F, set. Since S2—{p,} is homeomorphic to the plane, it follows that
there exists a sequence {i,,} of continuous functions, each mapping M into S2—{p,},
such that ¢, — ¢ pointwise on M. But then ®(y,(x)) - O(Y(x))=4¢(x) for each
fixed x € M, so ¢ is of Baire class = 1(M, S2).

A special case of Theorem (b) was proved (in effect) in [6, proof of Theorem 6]
by means of a rather messy lemma (Lemma 3). Theorem (a) provides a proof that
is both more general and more esthetically satisfactory.

THEOREM (b). Let M be a metric space, and let ¢: M — S? be a function. Then ¢
is of honorary Baire class <2(M, S?) if, and only if, there exists a countable set
N< M such that, for every closed set F< S?, ¢~ (F)— N is a G set.
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Proof. The implication in one direction is trivial. Now assume that N is countable
and that ¢ ~1(F)— N is a G; set for every closed set F< S2. Let ¢, be the restriction
of ¢ to M—N. Since S2 is a subset of R3, ¢, is of Baire class <1(M— N, R®).
Because M—N is a G, set, ¢, can be extended to a function ¢, of Baire class
<1(M, R®). Now, ¢,(x) € S2 except for only countably many x, so there exists
some point g in the open ball enclosed by S2 such that ¢ is not in the range of ¢,.
Define a mapping P: R®—{gq} — S2 as follows. If a € R®—{g}, let L be the ray with
end point at ¢ which passes through a, and let P(a) be the intersection point of L
with S2. Then P is continuous and P(a)=a for each ae S2 Let y=Po¢,. If
G<=S? is open, then ¢~ (G)=¢; }(P~}(G)), so that ~*(G) is an F, set. Thus, by
Theorem (a), ¢ is of Baire class < 1(M, S2). Moreover, if x ¢ N, then ¢,(x) = $o(x)
=¢(x) € S2, so that y(x)=P(4(x))=¢(x). Therefore ¢ is of honorary Baire class
<2(M, S2).

An alternative proof of Theorem (b) could be given by combining Theorem (a)
with the following result.

THEOREM (c). Let M be a metric space, E a G set in M, ¢ a function of Baire
class <1(E, S?). Then ¢ can be extended to a function of Baire class <1(M, S?).

To prove this, use the technique appearing in the proof of Theorem (a).

Finally, we note that a theorem proved by Bagemihl and McMillan for real-
valued functions [1, Theorem 2] can be transferred to the Riemann sphere by
means of our technique.
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